2023考研數(shù)學(xué)高數(shù)求極限的16種方法
首先對(duì)極限的總結(jié)如下。極限的保號(hào)性很重要就是說在一定區(qū)間內(nèi)函數(shù)的正負(fù)與極限一致。
1、極限分為一般極限,還有個(gè)數(shù)列極限
(區(qū)別在于數(shù)列極限是發(fā)散的,是一般極限的一種)。
2、解決極限的方法如下
1)等價(jià)無窮小的轉(zhuǎn)化,(只能在乘除時(shí)候使用,但是不是說一定在加減時(shí)候不能用但是前提是必須證明拆分后極限依然存在)e的X次方-1或者(1+x)的a次方-1等價(jià)于Ax等等。全部熟記。(x趨近無窮的時(shí)候還原成無窮小)
2)洛必達(dá)法則(大題目有時(shí)候會(huì)有暗示要你使用這個(gè)方法)
首先他的使用有嚴(yán)格的使用前提。必須是X趨近而不是N趨近。(所以面對(duì)數(shù)列極限時(shí)候先要轉(zhuǎn)化成求x趨近情況下的極限,當(dāng)然n趨近是x趨近的一種情況而已,是必要條件。還有一點(diǎn)數(shù)列極限的n當(dāng)然是趨近于正無窮的不可能是負(fù)無窮!)必須是函數(shù)的導(dǎo)數(shù)要存在!(假如告訴你g(x),沒告訴你是否可導(dǎo),直接用無疑是死路一條)必須是0比0,無窮大比無窮大!當(dāng)然還要注意分母不能為0。
洛必達(dá)法則分為三種情況
1)0比0無窮比無窮時(shí)候直接用
2)0乘以無窮,無窮減去無窮(應(yīng)為無窮大于無窮小成倒數(shù)的關(guān)系)所以無窮大都寫成了無窮小的倒數(shù)形式了。通項(xiàng)之后這樣就能變成1中的形式了
3)0的0次方,1的無窮次方,無窮的0次方
對(duì)于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對(duì)數(shù)的方法,這樣就能把冪上的函數(shù)移下來了,就是寫成0與無窮的形式了,(這就是為什么只有3種形式的原因,ln(x)兩端都趨近于無窮時(shí)候他的冪移下來趨近于0,當(dāng)他的冪移下來趨近于無窮的時(shí)候ln(x)趨近于0)
3、泰勒公式
(含有e^x的時(shí)候,尤其是含有正余旋的加減的時(shí)候要特變注意!)e^x展開,sinx展開,cos展開,ln(1+x)展開對(duì)題目簡化有很好幫助
4、面對(duì)無窮大比上無窮大形式的解決辦法
取大頭原則最大項(xiàng)除分子分母!看上去復(fù)雜處理很簡單。
5、無窮小與有界函數(shù)的處理辦法
面對(duì)復(fù)雜函數(shù)時(shí)候,尤其是正余弦的復(fù)雜函數(shù)與其他函數(shù)相乘的時(shí)候,一定要注意這個(gè)方法。面對(duì)非常復(fù)雜的函數(shù)可能只需要知道它的范圍結(jié)果就出來了!
6、夾逼定理
(主要對(duì)付的是數(shù)列極限)這個(gè)主要是看見極限中的函數(shù)是方程相除的形式,放縮和擴(kuò)大。
7、等比等差數(shù)列公式應(yīng)用
(對(duì)付數(shù)列極限)(q絕對(duì)值符號(hào)要小于1)
8、各項(xiàng)的拆分相加
(來消掉中間的大多數(shù))(對(duì)付的還是數(shù)列極限)可以使用待定系數(shù)法來拆分化簡函數(shù)。
9、求左右求極限的方式
(對(duì)付數(shù)列極限)例如知道Xn與Xn+1的關(guān)系,已知Xn的極限存在的情況下,Xn的極限與Xn+1的極限是一樣的,應(yīng)為極限去掉有限項(xiàng)目極限值不變化。
10、兩個(gè)重要極限的應(yīng)用
這兩個(gè)很重要!對(duì)第一個(gè)而言是x趨近0時(shí)候的sinx與x比值。第2個(gè)就如果x趨近無窮大無窮小都有對(duì)有對(duì)應(yīng)的形式(第二個(gè)實(shí)際上是用于函數(shù)是1的無窮的形式)(當(dāng)?shù)讛?shù)是1的時(shí)候要特別注意可能是用第二個(gè)重要極限)
11、還有個(gè)方法,非常方便的方法
就是當(dāng)趨近于無窮大時(shí)候,不同函數(shù)趨近于無窮的速度是不一樣的。x的x次方快于x!,快于指數(shù)函數(shù),快于冪數(shù)函數(shù),快于對(duì)數(shù)函數(shù)(畫圖也能看出速率的快慢)。當(dāng)x趨近無窮的時(shí)候他們的比值的極限一眼就能看出來了
12、換元法
是一種技巧,不會(huì)對(duì)某一道題目而言就只需要換元,但是換元會(huì)夾雜其中
13、假如要算的話四則運(yùn)算法則也算一種方法,當(dāng)然也是夾雜其中的。
14、還有對(duì)付數(shù)列極限的一種方法,就是當(dāng)你面對(duì)題目實(shí)在是沒有辦法走投無路的時(shí)候可以考慮轉(zhuǎn)化為定積分。一般是從0到1的形式。
15、單調(diào)有界的性質(zhì)
對(duì)付遞推數(shù)列時(shí)候使用證明單調(diào)性。
16、直接使用求導(dǎo)數(shù)的定義來求極限
(一般都是x趨近于0時(shí)候,在分子上f(x)加減某個(gè)值)加減f(x)的形式,看見了有特別注意)(當(dāng)題目中告訴你F(0)=0時(shí),f(0)的導(dǎo)數(shù)=0的時(shí)候就是暗示你一定要用導(dǎo)數(shù)定義!)
(注:本文來自網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系刪除)
2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計(jì)劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對(duì)性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級(jí),無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識(shí)點(diǎn)入門;個(gè)性化制定備考方案,助你贏在起跑線,早出發(fā)一點(diǎn)離成功就更近一點(diǎn)!
考研院校專業(yè)選擇和考研復(fù)習(xí)計(jì)劃 | |||
2023備考學(xué)習(xí) | 2023線上線下隨時(shí)學(xué)習(xí) | 34所自劃線院??佳袕?fù)試分?jǐn)?shù)線匯總 | |
2022考研復(fù)試最全信息整理 | 全國各招生院校考研復(fù)試分?jǐn)?shù)線匯總 | ||
2023全日制封閉訓(xùn)練 | 全國各招生院??佳姓{(diào)劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分?jǐn)?shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學(xué)科門類排行榜 |
相關(guān)推薦
2023考研高數(shù)基礎(chǔ)知識(shí):構(gòu)成函數(shù)的三要素
2023考研高數(shù)基礎(chǔ)備考:函數(shù)的奇偶性與周期性
2023考研高數(shù)基礎(chǔ)備考:有界性和單調(diào)性
2023考研高數(shù)基礎(chǔ)備考:分段函數(shù)
2023考研高數(shù)基礎(chǔ)備考:函數(shù)的間斷點(diǎn)
2023考研高數(shù)基礎(chǔ)備考:閉區(qū)間連續(xù)函數(shù)的性質(zhì)
2023考研高數(shù)基礎(chǔ)備考:數(shù)列極限存在準(zhǔn)則
跨考考研課程
班型 | 定向班型 | 開班時(shí)間 | 高定班 | 標(biāo)準(zhǔn)班 | 課程介紹 | 咨詢 |
秋季集訓(xùn) | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對(duì)1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班) | |
2023集訓(xùn)暢學(xué) | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對(duì)性一對(duì)一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測(cè)試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù) |